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Introduction 

Perceiving patterns where none exist and missing patterns that do exist both commonly 

occur in real-world situations characterized by uncertainty, while optimal pattern detection lies at 

the center of this cognitive-behavioral continuum. Humans use causal inference from pre-

existing data in order to generate hypotheses, recognize patterns, and make decisions; a simple 

but reliable test for this type of casual inference is a “blicket detector,” which reacts in the 

presence of certain objects or combinations of objects but not others. 

 

Figure 1. A sample blicket detector experiment.
4
 Given that the causality is deterministic, sufficient information can 

be gathered to infer that the blue cube alone activates the machine. 

 

When studied in a controlled environment, decision making often involves manipulated, 

deterministic variables, but in reality, most decisions are made in conditions of uncertainty, 

where feedback is often unreliable. A neuroeconomic study
5
 suggested that conditions of 

increased ambiguity were associated with greater midbrain (i.e. striatum and amygdala) 

activation, which implied that as feedback becomes less accurate, people become more reliant on 

their emotions or instincts rather than logical processes which have traditionally been associated 

with the prefrontal cortex in the forebrain. 

Figure 2 (next page). Shift in midbrain activity in accordance with ambiguity in the neuroeconomic study. 

Although ambiguity was not quantified, the plots under B show a general signal increase in the midbrain as 

ambiguity increased. 



 
 

In addition, a study
2
 done by Chiarello (1990) on semantic priming, or the effect in which 

words assist the recognition of other related words, showed that for some types of semantic 

relationships, the left visual field (LVC) influenced priming effects to a greater extent than the 

right visual field (RVC). This in turn suggested that priming led to a shift in brain activity toward 

the right hemisphere which dictates the left visual field, even though the data was purely 

behavioral. This study also supported the notion that the left side of the brain is associated with 

more precise semantic tasks, while the right side is associated with broader semantic tasks, which 

may lend support to a similar lateralization of brain function from ambiguity-related factors. 

One way to expand on the notion of causal inference in learning patterns is by 

investigating the threshold of change in circumstances that must be passed before humans adapt 

to new patterns. The flexibility of changing mental rules, or set shifting, is sensitive to ambiguity 

priming, the process in which a prolonged period of uncertainty followed by the sudden 

discovery of a definite pattern leads to perseveration toward the initial pattern.  

 

Figure 3. The ambiguity priming process. 



An experiment that made use of ambiguity priming involved having participants viewing 

a series of dots on a flat screen and judging the direction in which they were moving, either left 

or right. Only a certain percentage of the dots (50% in lower ambiguities, 6% in higher 

ambiguities) were “coherent,” or moving together in the same direction, while the remaining 

incoherent dots remained static and flickered on and off for the purpose of distraction. Results 

from the experiment led to an emphasis on individual variability. During ambiguity priming 

trials, the task began at a high ambiguity to instill a state of confusion in the participant before 

drastically lowering the ambiguity to “plant” the pattern, allowing participants to see the 

direction in which the dots were moving. After priming, the participants were expected to have 

greater difficulty adjusting to changes in the motion of the dots than if the priming did not occur. 

Another essential component of decision making is feedback – an analysis of a 

quantitative relationship between feedback ambiguity and pattern detection, through modeling, 

may lend further insight into human cognition by offering predictive power in regard to 

individual behavior during decision making. 

Objective  

The intent of this study was to observe individual differences in pattern recognition and 

set shifting under varying situations, including the problem of whether these differences were 

primarily due to state or trait. Our aims included finding a correlation between the performance-

ambiguity differential and susceptibility to ambiguity priming, associating different states with 

activations in different regions of the cerebral cortex and midbrain, and producing computational 

models to differentiate individuals based on behavioral signals in pattern recognition and 

ambiguity priming. 

Materials and Methods 



The setup for the experiment involved programming a graphical pattern detection task in 

MATLAB R2010a with the Psychophysics Toolbox Version 3 extension. The task, themed on 

role-play cyber security to facilitate emotional engagement, required participants to deduce the 

correct answer choice, based on the pattern in its properties, from each list of communications.  

 Time Destination File Size Alert 

1 3:00 Seattle <100 ET Trojan Sality Variant Downloader 

2 9:00 Chicago 100+ FTP Satan Scan 

3 15:00 Los Angeles - STOR overflow attemptINFO web bug 

4 21:00 New York - Rar Encrypted File Transfer 

5 - Miami - Suspicious Browser Redirect 
Table 1. Each communication has a number of properties, including time, destination, file size, and alert. In the 

table, the possible values for each property are displayed by column.  

 

Immediately after each response, participants were given feedback for a period of time, 

which allowed them to narrow down the answer. The pattern changed periodically after several 

correct responses in a row, and the objective was to find a certain number of patterns. User 

interaction with the program was limited to three separate keyboard keys – two for switching 

between answer options and one for selecting an answer option. For standardization, each 

participant was also required to complete a standardized tutorial to learn the task. Preliminary 

testing involved isolating and manipulating variables (demonstrated below) such as ambiguity 

level, number and complexity of the answer options, pattern operator types, and visual 

representation to define an adaptive difficulty method; the sequence of values for these variables 

were permuted in a random order to prevent order effects. Controlled variables were 

automatically set to their default values. 

 
Figure 5. The ambiguities were defined as approximate Gaussian distributions centered at specific points along the 

feedback scale, with higher being more positive. The graphs represent, for ambiguity levels from 0 to 4, the 

probabilities of each feedback based on whether the answer choice was correct or incorrect. The default value was 0. 
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Figure 6. Possible sequences of events in the Deterministic and Probabilistic feedback modes. Ambiguity was a 

major defining component of the latter – as the ambiguity level increased, the feedback was more likely to fall into a 

gray area. Feedback was shown for exactly 2.5 seconds; the test cross was shown for exactly 0.5 seconds. 



   
Figure 4. Three forms of visual representation, from left to right: Semantic, Pictorial, and Graphical. In the latter, 

the placement of the answer options varied with each set of communications; we hypothesized that this fact would 

lead longer pattern recognition times. The default value was the Semantic mode. 

 

 Finally, the number of answer choices, the number of properties, and the pattern operator 

type were combined together into a vector of variables instead of being tested separately. The 

rationale was that these variables may not influence performance independently of one another. 

The pattern operator was either Normal, Conjunctive, or Disjunctive for each pattern – Normal 

was the singular operator in which the pattern was determined by one property, while 

Conjunctive and Disjunctive patterns depended on two properties and were based on a logical 

AND and a logical OR, respectively. The permutations for the values in this vector were 

represented by a 3-dimensional matrix, which was in turn stored in an array of hashes. 

 

Figure 7. A diagram of the possible hashes, with values from 1 to 36. Each represents a distinct combination of 1 of 

4 possible numbers of answer choices, 1 of 3 possible numbers of properties, and 1 of 3 possible pattern operators. 



 

 

  

Equation 1. The hash function  outputs the hash from 1 to 36 based on the number of answer choices , the 

number of properties , and the pattern operator number  (from 1 to 3, in order from Normal to Disjunctive). 

Below it, the inverse hash function recovers the variable vector from the hash. Brackets represent taking the ceiling 

(or least integer) function of the enclosed quantity. 

 

In the experiment, participants were tested both on regular pattern detection with variable 

ambiguity and on the ambiguity priming task. The program recorded behavioral data such as the 

accuracy and timestamps of each response and, for a number of trials, also interfaced with a 

Hitachi ETG-4000 optical topography system for measuring the neurobiological response using 

near-infrared spectroscopy (NIRS). 

 
Figure 8. The Hitachi ETG-4000 optical topography system. After position calibration, a wireframe model of the 

head is shown on-screen. 

 

   
Figure 9. After temporal synchronization of the transistor-transistor logic (TTL) pulse onsets with the behavioral 

timestamps, the localized cortical activation is contrasted between various feedback ambiguities and various states 

of activity including decision-making, positive feedback, negative feedback, and rest, using the NIRS Analysis 

Package (NAP) developed by our lab. These visual maps show relative changes in concentration of i) oxygenated 

hemoglobin, ii) deoxygenated hemoglobin, and iii) total hemoglobin by channel position. 

 

Results 

 Note: Pattern recognition time is operationally defined as the time elapsed from the appearance of the pattern to the 

selection of the first correct answer in the streak. Time spent in the feedback and test cross screens is included and totals 3 

seconds per response. Asterisks indicate outliers and are not included in the statistical measures. 



 
Trial Ambiguity 

 0 (None) 1 (Minimal) 2 (Low) 3 (Moderate) 4 (High) 

1 72.8 154.8 59.7 372.8 399.5 

2 90 21.9 239.6 263.2 172.9 

3 360.2* 56.2 20.4 280.8 161.3 

4 130.8 103.2 48.7 116.8 220.5 

5 48.4 668.5* 1160.8* 123.3 363.2 

6 14.7 172.1 34.4 72.4 439.6 

7 67.1 46.1 222.4 178.7 805.2* 

8 27.3 22.7 25.4 60 121.4 

9 35.6 38.3 54.2 21.6 27.5 

Average 60.8 76.9 88.1 165.5 238.2 

 

Trial Pattern Recognition Time by Visual Mode 

 Semantic Pictorial Graphical 

1 37.9 27.3 72.7 

2 37.8 46.2 46.6 

3 17.3 40.9 55.1 

4 32.7 37.7 153.3* 

5 57.4 30.9 38 

6 244.6* 52.9 125.8* 

7 54.4 41.2 27.5 

8 41.2 60.1 36.1 

9 65.3 39.9 24.4 

10 28.3 69.1 20.5 

11 56 45.2 267.5* 

12 15.2 79.8 25.6 

13 26.9 29 25.1 

14 29.9 17.1 19.6 

15 97.1 23 31 

16 48.6 49.4 63.6 

17 241* 50.5 64.9 

18 11.8 34.8 20.8 

19 36.9 15.8 63.1 

20 34 67.8 51.9 

Average 40.48333 42.93 40.38235 

Standard Deviation 20.55415 17.26762 18.17417 

 

Sample data from testing the variable vector of answer options, properties, and operator type: 
Pattern 

Number 

Answer 

Options 

Properties Operator Time to find 

pattern (sec) 

Time spent on 

pattern (sec) 

1 3 4 Disjunctive 194.94 207.34 

2 4 2 Normal 62.93 82.71 

3 4 4 Disjunctive 89.48 112.78 

4 2 4 Conjunctive 5.85 26.22 

5 4 2 Conjunctive 10.81 25.88 

6 4 2 Disjunctive 5.97 26.75 

7 5 4 Conjunctive 138.69 161.2 

8 2 2 Disjunctive 3.47 12.79 

9 3 4 Conjunctive 20.31 38.57 

10 3 4 Normal 8.7 29.33 

11 3 4 Disjunctive 155.34 164.79 

12 2 3 Normal 6.91 14.44 

13 5 2 Conjunctive 80.57 98.28 

14 5 4 Disjunctive 74.39 92.76 

15 2 3 Conjunctive 71.11 79.68 

 



   

  

The graph of the relationship between ambiguity level and pattern detection time seems to 

suggest an exponential relationship of the form 

( 1) ; ( 1)n nt A t k A c      

Equation 2.  represents time, while  represents ambiguity level. , , and  are all constants. 

 

Figure 10. Maps showing activation of, from left to right, oxygenated, deoxygenated, and total hemoglobin when 

comparing cortical response of one test subject to low and high ambiguity. 

 

The ambiguity also provided interesting NIRS results. In accordance with the hypothesis, 

there seems to be a hemispheric shift over increasing ambiguity. Although it is possible that the 

shift in hemispheric activity is because of noise due to the increased difficulty, the decrease in 

left hemispheric activity provides strong evidence that the shift is related to ambiguity, as 



opposed to noise. In the situation of noise, there would be the same amount of activity in the left 

hemisphere, so it is safe to say that the shift is related to ambiguity.  

In order to analyze the NIRS data in NAP, we had to set conditions for comparison. The 

conditions were set as shown by the numbers below: 

 
Figure 11. 

 

The main comparisons between the conditions were: condition 1 versus condition 4, condition 2 

versus condition 5, and condition 3 versus condition 6.  

 

The figure above shows the contrast between condition 1 and condition 4 deoxy. The deoxy 

activity in the right hemisphere is greater for lower ambiguities, thus indicating more oxy 

activity in the right hemisphere for higher ambiguities. The location of activity is nearly the same 
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for the contrasts between condition 2 and 5 (below left) and between condition 3 and 6 (below 

right). 

  

The initial oxygenated hemoglobin brain maps also affirmed the hypothesis. The same 

conditions were compared, except in this case there was more oxygenated hemoglobin in the left 

hemisphere for the lower ambiguity patterns. The brain maps are shown in order below (1 vs. 4, 

2 vs. 5, 3 vs. 6). 

 



Models 

For individual comparison, a number of models based on statistical inference may be 

applied to the behavioral data. These include: 

1. Recursive probability model 

2. Regime switching model (Markov Tracking/Guessing) 

3. Bayesian updating model 

4. State-space model (SSM) (still in early stages) 

Recursive probability model 

This model is founded on the logistic growth equation. In essence, I realized that a 

sigmoidal curve was necessary due to the fact that early in the pattern the probability of getting 

the answer correct is near the probability of guessing (1/i where i = number of choices). 

The logistic growth function is defined as: 

max 1t t
t

dN K N N
r N r

dt K K

   
    

  
 where K is p=1 and N is actually a probability. 

The main issue with the logistic growth function is that it is continuous with respect to time. In 

our case, we do not have a continuous function nor can we use time as a step. 

To deal with the continuous function issue, I simply created a recursive model that takes a 

discrete step size of “s”. 

Below is the derivation: 

( ) ( ) ( ) ( ) r 1
1

tdp p
p t t p t t p t p t s

dt

 
        

 
 (**Notice how the carrying capacity K is p=1) 

Thus ( 1) ( )[1 (1 ( )]p t p t rs p t     where 
1

(0)p
i

 . 

Next I needed to deal with r and s.  



I’ll start with the solution to the step size issue. It is important to note that the ambiguity of a 

given pattern is not known by the participant; however, they do know that a feedback of 10 

means they are more likely correct than a feedback of 6. So we can think of step size as how 

accurate the feedback is. If an individual chooses the correct selection and get a feedback over 5 

then they are moving a certain number of steps forward. Meanwhile, if they get an answer 

correct but get a low feedback, then they are moving backwards. Furthermore, for incorrect 

selections, the same phenomenon exists, except the magnitude of the steps is dependent on the 

number of choices (i). 

 
The diagram above indicates how the step size is calculated. The constants h1 and h2 are simply 

place holders that can adjust the magnitude of step based on the data. 

The final calculation that is left is r. 

The r value determines how quickly the growth occurs in a sense. A higher r value would mean 

that a participant would be able to detect the pattern faster. Therefore the r value is based on the 

chart size and ambiguity. After looking into the 3-dim data I decided to create a chart difficulty 

variable that is based on the number of choices (i) and the number of properties (j).  

1

[ ( ) 1][ 1] {4,5, 2,5}
j

i

D L i i L


      

Furthermore, the ambiguity is affected by the difficulty, so, based on initial data, I set r as 

follows: 

Sn-1 feedback 

1

1
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n n
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max

0

( 1)

z

kDF
r A

F

 
  
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k in this case is small, due to the fact that D can approach values of 50. 

The F represents the F value calculated from the NIRS trials. For behavioral trials F can either be 

ignored or left variable (will get to later). Essentially, the F value represents how well an 

individual performs at a certain ambiguity in relation to their performance at lower ambiguities. 

This allows us to create a component of individual variability that is related to the observed 

hemispheric shifts.  

The final recursive equation is: 

1 1 1

0

( 1) (1 )

z

kD

n n n n n

F
p p p A p s

F



  

 
    

 
 

Equation 3. 

 

Regime switching model (Markov Tracking/Guessing) 

 

 

 

 

 

 

 

 

 

 



The model on the previous page indicates a general way to look at the task. The alpha values in 

reality actually change as an individual receive more and more feedback; however, from a 

general standpoint, a Markov chain is easier to model and the alpha values may be a possible 

substitute for F values in the recursive probability model. The tracking mode can be determined 

in two ways: recognition of pattern or attempted detection of pattern. If the tracking mode is set 

to be simply the recognition of the pattern, the model is extremely simple. All the answers within 

the streak would be counted as tracking and the rest as guessing. In this case the alpha value 

would be determined by calculating the expected value required to match the behavioral data.  

The other tracking mode would also involve tracking of incorrect patterns. This version of 

analysis would require looking at the individual selections and seeing if 3 or more in a row 

shared the same information. In a sense, this model would be much more powerful. 

After developing these models, it would be useful to create another model to fix conditions. This 

model would include correct tracking, incorrect tracking, and guessing at the various 

ambiguities. 

Bayesian updating model 

A simple Bayesian model would constantly update probabilities by repeatedly utilizing 

Bayes’ Rule: 

1

( | ) ( )
( | )

( | ) ( )

k k
k n

i i

i

p A B p B
p B A

p A B p B





 

Equation 4. Bayes’ Rule applied to the behavioral data. A is the previous feedback or some other representation of 

the current state, Bk represents the occurrence of outcome k (such as a correct or incorrect response), and n is the 

total number of possible outcomes. 

p(Bk) is known as the prior and is subject to estimation in the initial step. p(A | Bk) is known as 

the likelihood and is taken from statistical measures of the behavioral data. p(Bk | A), the 



posterior, is substituted into the prior p(Bk) of the next iteration; this process may be repeated 

indefinitely using a sequence of ’s in a process known as Bayesian updating. 

State-space model (SSM) 

 Because the task consists of a series of states, each which has an input and an output and 

can be represented by variables as axes, a SSM may be a good fit. One option is to use Shannon 

entropy to quantify probabilities for possible outcomes as microstates. 

Discussion 

The initial data suggested that higher comparative ambiguity led to a larger increase in 

right hemispherical activity of the brain during the semantic version of the task, which may be 

consistent with Chiarello’s research. However, more investigation is needed. 

By modeling the effect of ambiguity on pattern detection, it would be possible to 

determine the probability of detecting a pattern based on the state of the game and previous data. 

These probabilities in turn would allow observation of false positive and false negative instances 

and offer insight into the characteristics of optimal pattern detectors. In addition, quantitative 

models would be able to lay the groundwork for a more sensitive Bayesian adaptive algorithm 

able to fit the variables of the task to the nuances of each participant. 

Future directions for this study include psychotherapy for schizophrenia, which is 

associated with apophenia or the perception of false patterns, and Asperger’s syndrome
7
, which 

exhibits a larger performance gap than normal between lower and higher relative ambiguities 

and, according to the hypothesis, a higher susceptibility to ambiguity priming. 

Pattern detection in the presence of ambiguous feedback also provides applications 

outside of cognitive psychology, such as in the medical field for medical and psychological 

diagnoses. Doctors and psychologists could benefit from a deeper understanding of human 



tendencies in these situations where lines are blurred. In the diagnosis of mental disorders this 

proves to be of utmost importance due to the fact that many patients often have a range of 

symptoms from multiple disorders or have symptoms that are common to many disorders, thus 

introducing a factor of ambiguity. Although a large part of this problem lies in the actual 

classification of the disorders, it is important to note that an understanding of human pattern 

detection in cases of ambiguous feedback could help pinpoint in what direction a potential 

doctor/psychologist would lean. This predictive power would help decrease the amount of false 

positives and false negatives in regard to the diagnosis of disorders and diseases. Other 

applications include machine learning from probabilistic inputs and stock market predictions 

based on economic indicators. 
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